
GLOBALSAT GPS+GOLNASS Engine Board

Hardware Data Sheet

Product No: MT-5110G

Version 1.1

16F., No. 186, Jian-Yi Road, Chung-Ho City, Taipei

Hsien 235, Taiwan

Tel: 886-2-8226-3799 Fax: 886-2-8226-3899

E-mail: service@globalsat.com.tw

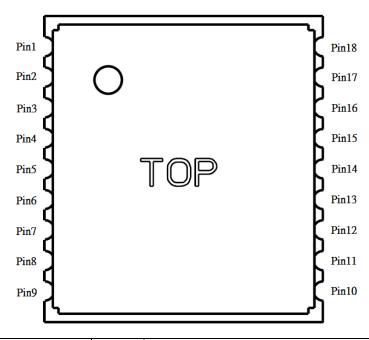
Website: www.globalsat.com.tw

Issue Date	APPR	CHECK	PREPARE
2013/08/01	Ray		Mason

Product Description

Product Description

MT-5110G is a compact, high performance, and low power consumption GPS+GLONASS engine board. The chipset is powered by MediaTek, it can provide you with superior sensitivity and performance even in urban canyon and dense foliage environment. The miniature size makes the module easy and the best choice to integrate into portable applications such as DSC, cellular phone, PMP, and gaming devices. MT-5110G is suitable for the following applications:


- Automotive navigation
- Personal positioning
- Fleet management
- Mobile phone navigation
- Marine navigation

Product Features

- MediaTek high sensitivity solution
- Support 99 search channels and 33 simultaneous tracking channels.
- Very high sensitivity (Tracking Sensitivity: -165dBm)
- Extremely fast TTFF (Time To First Fix) at low signal level
- Support UART(bidirectional transmission) interface
- Support Serial port NMEA output.
- Built-in LNA
- Compact size (10.1mm x 9.7mm x 2.4mm) suitable for space-sensitive application
- One size component, easy to mount on another PCB board
- Support NMEA 0183 V4.0 (GGA, GSA, GSV, RMC, VTG, GLL, ZDA)
- Supports WASS/EGNOS/MSAS/GAGAN (depends on firmware setting)

Product Pin Description

PIN Number(s)	Name	Туре	Description	Note		
				This is the main transmits channel for		
			outputting navigation and measurement data			
2	TXD	0	to user's navigation software or user written			
			software. Baud rate based on firmware			
			setting, Output TTL level 2.8V.			
			This is the main receive channel for receiving			
3	RXD		software commands to the engine board from			
3	חאט		MTK software or from user written software.			
			Baud rate based on firmware setting.			
			This pin provides one pulse-per-second			
4	TIMEPULSE	0	output from the board, which is synchronized			
			to GPS time. If do not use it, Just NC.			
			This is the power input for the SRAM and			
			RTC. To achieve the faster start-up offered			
6	VBAT	Р	by a hot or warm start, a backup power must			
			be connected. The power voltage should be			
			between 2.5V and 4.3V.			
5,7,13,15,16	RESERVED		MT-5110G reserved pin, just NC.			
,17,18			3			
8	vcc	Р	This is the main power supply to the engine			
J		'	board. (3.3Vdc to 4.3Vdc)			

MT-5110G High Performance GPS+GLONASS Engine Board

1,10,12	GND	Р	Ground	
9	RESET	I	This pin is input low active. This Module has internal Power on Reset circuit.	
11	RF_IN	I	This pin receives signal of GPS+GLONASS analog via external antenna. It has to be a controlled impedance trace at 50ohm. Do not have RF traces closed the other signal path and routing it on the top layer. Keep the RF traces as short as possible.	
14	VCC_RF	0	This pin can supply external active antenna power 2.8V. If do not use it, just NC.	

Electrical Specification

Absolute Maximums Ratings

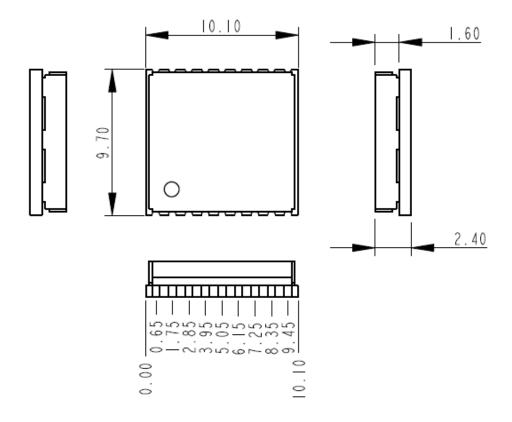
Parameter	Min.	Тур.	Max.	Conditions	Unit
Power					
Power supply voltage(VCC)	3.3	3.3	4.3		٧
Backup battery supply	2.5		4.3		٧
VCC_RF output voltage		VCC			
Main power supply Current		37		3.3V	mA
Backup battery supply Current	4.5	5	5.5	3.3V	uA
RF Input					
Input Impedance		50			Ω
Operating Fraguency		1.575			GHz
Operating Frequency		1.608			GHZ

DC Electrical characteristics

Parameter	Symbol	Min.	Тур.	Max.	Conditions	Units
I/O Low Level Output Voltage	Vol			0.42		V
I/O High Level Output Voltage	Vон	2.38				V
I/O Low Level Input Voltage	VIL	-0.3		0.7		V
I/O High Level Input Voltage	Vih	2.1		3.1		V
TXD Output Voltage	V _{TO}	2.52	2.8	3.08		V
RXD Input Voltage	V_{RI}			3.6		V
High Level Output Current	І он		2			mA
Low Level Output Current	lol		2			mA
VCC_RF	Vo		2.8			V
VCC_RF Output Current	Voc		7			mA

Environmental Characteristics

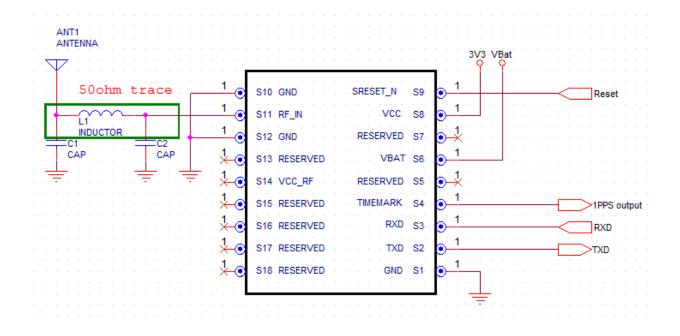
Parameter	Min	Тур	Max	Unit
Humidity Range	5		95	% non-condensing
Operation Temperature	-40	25	85	$^{\circ}$ C
Storage Temperature	-40		85	$^{\circ}$ C



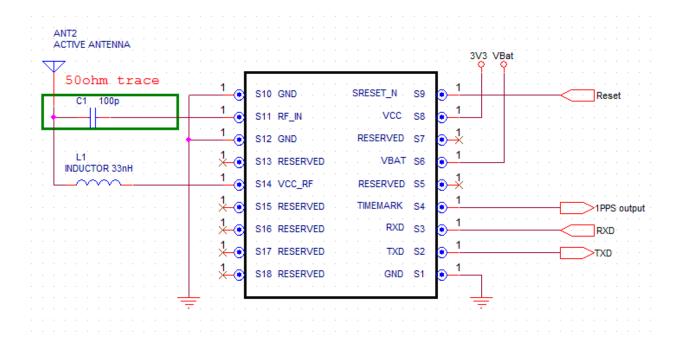
Receiver Performance

Sensitivity	Chipset Tracking:	-165dBm	
Sensitivity	Chipset Autonomous acquisition :	-148 dBm	
	Cold Start – Autonomous	< 35s	
Time-To-First-Fix	Warm Start – Autonomous	< 35s	
	Hot Start – Autonomous	< 1s	
Horizontal Position Accuracy	Autonomous	< 3m (2D RMS)	
FIGHZORIAI FOSILION ACCURACY	SBAS	<2.0m	
Volcoity Accuracy	Speed	< 0.01 m/s	
Velocity Accuracy	Heading	< 0.01 degrees	
Reacquisition	0.1 second, average		
NMEA Update Rate	Output data format based on firmware setting		
Maximum Altitude	< 18,000 meter		
Maximum Velocity	< 515 meter/ second		
Maximum Acceleration	< 4G		

Package Dimensions



Туре	18-pin stamp holes
Dimensions	10.1 mm * 9.7 mm * 2.4 mm ±0.2mm

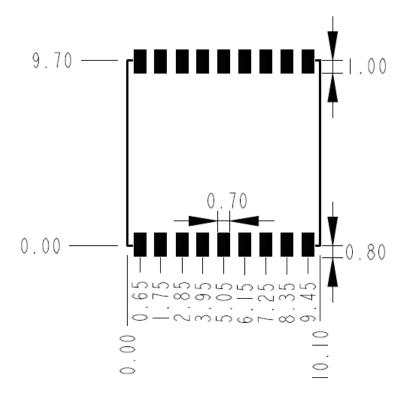


Application

Application circuit with passive antenna

Application circuit with active antenna

GPS/GLONASS Active Antenna Specifications (Recommendation)


Frequency:	1575.42 + 2MHz 1602MHz~1615MHz	Amplifier Gain:	18~22dB Typical
Axial Ratio:	3 dB Typical	Output VSWR:	2.0 Max.
Output Impedance:	50Ω	Noise Figure:	2.0 dB Max
Polarization:	RHCP	Antenna Input Voltage:	2.85V (Typ.)

NOTE:

1. VCC_RF: MT-5110G provides power 2.8V to external active antenna

Recommended Layout PAD

Unit: mm

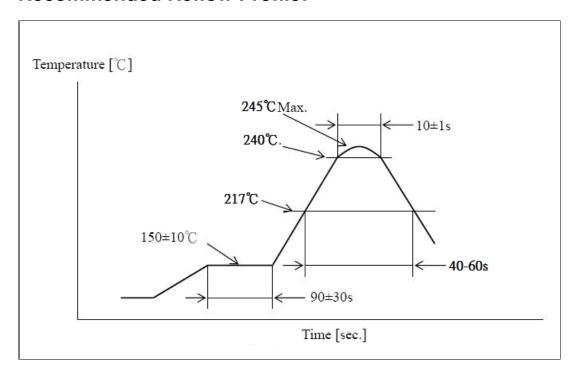
Tolerance: 0.1mm

PCB Layout Recommend

Do not routing the other signal or power trace under the engine board.

RF:

This pin receives signal of GPS+GLONASS analog via external active antenna .It has to be a controlled impedance trace at 50ohm.


Do not place the RF traces close to the other signal path and not routing it on the top layer. Keep the RF traces as short as possible.

Antenna:

Keep the active antenna on the top of your system and confirm the antenna radiation pattern axial ratio power gain noise figure VSWR are correct when you Setup the antenna in your case.

Recommended Reflow Profile:

Pre heating temperature: $150\pm10[^{\circ}\mathbb{C}]$ Pre heating time: $90\pm30[\sec.]$ Heating temperature: $240\pm5[^{\circ}\mathbb{C}]$ Heating time: $10\pm1[\sec.]$

Appendix

Label Artwork

A: GLOBALSAT

B: Module Info

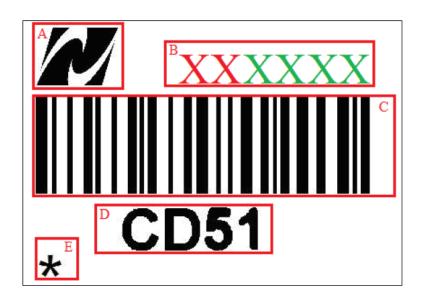
XX

SX = SiRF

MX = MTK

XG =GPS+GLONASS

XB =GPS+BDS


XC & XS=GPS

XXXX: IC Type & Date code

C: Bar code

D: Serial Number

E: First pin Mark

Reversion history

Reversion	Date	Name	Status / Comments
V1.0	2013/8/1	Mason	Initial Version
V1.1	2014/1/14	Mason	Modify Label Artwork